skip to main content


Search for: All records

Creators/Authors contains: "Hendry, Andrew P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Most studies assessing rates of phenotypic change focus on population mean trait values, whereas a largely overlooked additional component is changes in population trait variation. Theoretically, eco‐evolutionary dynamics mediated by such changes in trait variation could be as important as those mediated by changes in trait means. To date, however, no study has comprehensively summarised how phenotypic variation is changing in contemporary populations. Here, we explore four questions using a large database: How do changes in trait variances compare to changes in trait means? Do different human disturbances have different effects on trait variance? Do different trait types have different effects on changes in trait variance? Do studies that established a genetic basis for trait change show different patterns from those that did not? We find that changes in variation are typically small; yet we also see some very large changes associated with particular disturbances or trait types. We close by interpreting and discussing the implications of our findings in the context of eco‐evolutionary studies.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    Recent studies have shown that the repeated evolution of similar phenotypes in response to similar ecological conditions (here “parallel evolution”) often occurs through mutations in the same genes. However, many previous studies have focused on known candidate genes in a limited number of systems. Thus, the question of how often parallel phenotypic evolution is due to parallel genetic changes remains open. Here, we used quantitative trait locus (QTL) mapping in F2 intercrosses between lake and stream threespine stickleback (Gasterosteus aculeatus) from four independent watersheds on Vancouver Island, Canada to determine whether the same QTL underlie divergence in the same phenotypes across, between, and within watersheds. We find few parallel QTL, even in independent crosses from the same watershed or for phenotypes that have diverged in parallel. These findings suggest that different mutations can lead to similar phenotypes. The low genetic repeatability observed in these lake-stream systems contrasts with the higher genetic repeatability observed in other stickleback systems. We speculate that differences in evolutionary history, gene flow, and/or the strength and direction of selection might explain these differences in genetic parallelism and emphasize that more work is needed to move beyond documenting genetic parallelism to identifying the underlying causes.

     
    more » « less
  3. Reptiles display great diversity in color and pattern, yet much of what we know about vertebrate coloration comes from classic model species such as the mouse and zebrafish. Captive-bred ball pythons (Python regius) exhibit a remarkable degree of color and pattern variation. Despite the wide range of Mendelian color phenotypes available in the pet trade, ball pythons remain an overlooked species in pigmentation research. Here, we investigate the genetic basis of the recessive piebald phenotype, a pattern defect characterized by patches of unpigmented skin (leucoderma). We performed whole-genome sequencing and used a case-control approach to discover a nonsense mutation in the gene encoding the transcription factor tfec, implicating this gene in the leucodermic patches in ball pythons. We functionally validated tfec in a lizard model (Anolis sagrei) using the gene editing CRISPR/Cas9 system and TEM imaging of skin. Our findings show that reading frame mutations in tfec affect coloration and lead to a loss of iridophores in Anolis, indicating that tfec is required for chromatophore development. This study highlights the value of captive-bred ball pythons as a model species for accelerating discoveries on the genetic basis of vertebrate coloration. 
    more » « less
  4. Abstract

    The termterroiris used in viticulture to emphasize how the biotic and abiotic characteristics of a local site influence grape physiology and thus the properties of wine. In ecology and evolution, such terroir (i.e., the effect of space or “site”) is expected to play an important role in shaping phenotypic traits. Just how important is the pure spatial effect of terroir (e.g., differences between sites that persist across years) in comparison to temporal variation (e.g., differences between years that persist across sites), and the interaction between space and time (e.g., differences between sites change across years)? We answer this question by analyzing beak and body traits of 4388 medium ground finches (Geospiza fortis) collected across 10 years at three locations in Galápagos. Analyses of variance indicated that phenotypic variation was mostly explained by site for beak size (η2 = 0.42) and body size (η2 = 0.43), with a smaller contribution for beak shape (η2 = 0.05) and body shape (η2 = 0.12), but still higher compared to year and site‐by‐year effects. As such, the effect of terroir seems to be very strong in Darwin's finches, notwithstanding the oft‐emphasized interannual variation. However, these results changed dramatically when we excluded data from Daphne Major, indicating that the strong effect of terroir was mostly driven by that particular population. These phenotypic results were largely paralleled in analyses of environmental variables (rainfall and vegetation indices) expected to shape terroir in this system. These findings affirm the evolutionary importance of terroir, while also revealing its dependence on other factors, such as geographical isolation.

     
    more » « less
  5. null (Ed.)
    Abstract Urbanization is changing Earth's ecosystems by altering the interactions and feedbacks between the fundamental ecological and evolutionary processes that maintain life. Humans in cities alter the eco-evolutionary play by simultaneously changing both the actors and the stage on which the eco-evolutionary play takes place. Urbanization modifies land surfaces, microclimates, habitat connectivity, ecological networks, food webs, species diversity, and species composition. These environmental changes can lead to changes in phenotypic, genetic, and cultural makeup of wild populations that have important consequences for ecosystem function and the essential services that nature provides to human society, such as nutrient cycling, pollination, seed dispersal, food production, and water and air purification. Understanding and monitoring urbanization-induced evolutionary changes is important to inform strategies to achieve sustainability. In the present article, we propose that understanding these dynamics requires rigorous characterization of urbanizing regions as rapidly evolving, tightly coupled human–natural systems. We explore how the emergent properties of urbanization affect eco-evolutionary dynamics across space and time. We identify five key urban drivers of change—habitat modification, connectivity, heterogeneity, novel disturbances, and biotic interactions—and highlight the direct consequences of urbanization-driven eco-evolutionary change for nature's contributions to people. Then, we explore five emerging complexities—landscape complexity, urban discontinuities, socio-ecological heterogeneity, cross-scale interactions, legacies and time lags—that need to be tackled in future research. We propose that the evolving metacommunity concept provides a powerful framework to study urban eco-evolutionary dynamics. 
    more » « less
  6. Historically, many biologists assumed that evolution and ecology acted independently because evolution occurred over distances too great to influence most ecological patterns. Today, evidence indicates that evolution can operate over a range of spatial scales, including fine spatial scales. Thus, evolutionary divergence across space might frequently interact with the mechanisms that also determine spatial ecological patterns. Here, we synthesize insights from 500 eco-evolutionary studies and develop a predictive framework that seeks to understand whether and when evolution amplifies, dampens, or creates ecological patterns. We demonstrate that local adaptation can alter everything from spatial variation in population abundances to ecosystem properties. We uncover 14 mechanisms that can mediate the outcome of evolution on spatial ecological patterns. Sometimes, evolution amplifies environmental variation, especially when selection enhances resource uptake or patch selection. The local evolution of foundation or keystone species can create ecological patterns where none existed originally. However, most often, we find that evolution dampens existing environmental gradients, because local adaptation evens out fitness across environments and thus counteracts the variation in associated ecological patterns. Consequently, evolution generally smooths out the underlying heterogeneity in nature, making the world appear less ragged than it would be in the absence of evolution. We end by highlighting the future research needed to inform a fully integrated and predictive biology that accounts for eco-evolutionary interactions in both space and time.

     
    more » « less